Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(49): 10894-10899, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033103

RESUMO

The development of high-performance surface-enhanced Raman scattering (SERS) substrates is an urgent and important task. Here, tungsten nitride (WN) with a two-dimensional (2D) multilayer structure has been successfully prepared through a nitriding WO2.90 precursor. In addition to the highly active "hot spots" formed on the surface of the WN sheets, a large number of gaps between the nanosheets also exhibit a strong local surface plasmon resonance effect, which greatly improves the SERS activity. Evaluated as the SERS substrate, the WN with a 2D multilayer structure exhibits good SERS characteristics and good homogeneity and stability, even after strong acid, strong alkali, or long-term light treatment. Significantly, typical environmental contaminants such as dichlorophenol and butylated hydroxyanisole also exhibit strong Raman enhancement signals. This research provides a new method for designing inexpensive, high-activity, and universal SERS substrates.

2.
FASEB J ; 37(3): e22762, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719765

RESUMO

The glutamatergic-mediated excitatory system in the brain is vital for the regulation of sleep-wake and general anesthesia. Specifically, the paraventricular hypothalamic nucleus (PVH), which contains mainly glutamatergic neurons, has been shown to play a critical role in sleep-wake. Here, we sought to explore whether the PVH glutamatergic neurons have an important effect on the process of general anesthesia. We used c-fos staining and in vivo calcium signal recording to observe the activity changes of the PVH glutamatergic neurons during isoflurane anesthesia and found that both c-fos expression in the PVH and the calcium activity of PVH glutamatergic neurons decreased in isoflurane anesthesia and significantly increased during the recovery process. Chemogenetic activation of PVH glutamatergic neurons prolonged induction time and shortened emergence time from anesthesia by decreasing the depth of anesthesia. Using chemogenetic inhibition of PVH glutamatergic neurons under isoflurane anesthesia, we found that inhibition of PVH glutamatergic neurons facilitated the induction process and delayed the emergence accompanied by deepening the depth of anesthesia. Together, these results identify a crucial role for PVH glutamatergic neurons in modulating isoflurane anesthesia.


Assuntos
Isoflurano , Camundongos , Animais , Isoflurano/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Anestesia Geral
3.
ACS Nano ; 16(8): 13123-13133, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35930704

RESUMO

It is a major challenge to synthesize crystalline transition-metal nitride (TMN) ultrathin nanocrystals due to their harsh reaction conditions. Herein, we report that highly crystalline tungsten nitride (W2N, WN, W3N4, W2N3) nanocrystals with small size and excellent dispersibility are prepared by a mild and general in situ surface restraint-induced growth method. These ultrafine tungsten nitride nanocrystals are immobilized in ultrathin carbon layers, forming an interesting hybrid nanobelt structure. The hybrid WN/C nanobelts exhibit a strong localized surface plasmon resonance (LSPR) effect and surface-enhanced Raman scattering (SERS) effect, including a lowest detection limit of 1 × 10-12 M and a Raman enhancement factor of 6.5 × 108 comparable to noble metals, which may be one of the best records for non-noble metal SERS substrates. Moreover, they even can maintain the SERS performance in a variety of harsh environments, showing outstanding corrosion resistance, radiation resistance, and oxidation resistance, which is not available on traditional noble metal and semiconductor SERS substrates. A synergistic Raman enhancement mechanism of LSPR and interface charge transfer is found in the carbon-coated tungsten nitride substrate. A microfluidic SERS channel integrating the enrichment and detection of trace substances is constructed with the WN/C nanobelt, which realizes high-throughput dynamic SERS analysis.

4.
Sci Total Environ ; 802: 149905, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525710

RESUMO

Immobilizing heavy metals (HMs) from municipal solid waste incineration fly ash (MSWIFA) using shell coal gasification fly ash (SFA)-based geopolymer can solve the energy and environmental challenges simultaneously. In this study, we synthesized a geopolymer with SFA, metakaolin (MK), and steel slag (SS) to solidify and stabilize HMs (Pb, Cr, and Zn) and investigated the early immobilization mechanisms. The results show that the prepared geopolymer possessed high early-age mechanical strength and immobilization efficiency to HMs (>90%), even under the effect of excess HMs. The early immobilization mechanism of the geopolymer for the HMs could be described as follows. (1) Most of HMs were remained in the aluminosilicate. (2) The presence of amorphous zeolite precursor and clay minerals may contribute to restrain the HMs leaching; (3) Pb and Zn were trapped by the gel structure in M-O-Al and M-O-Si forms (M = Pb or Zn), whereas Cr (VI) was reduced to Cr (III). (4) Cr might involve in the geopolymerization of [SiO4] and [AlO4]- units. (5) The immobilization process of Pb and Zn in the geopolymer could be described as crystal growth (NG) - phase boundary reaction (I) - NG - I - diffusion (D), whereas that of Cr is prolonged to NG-I-NG-I-NG-I-D.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Carvão Mineral , Cinza de Carvão , Incineração , Chumbo , Metais Pesados/análise , Material Particulado , Resíduos Sólidos , Zinco
5.
J Healthc Eng ; 2021: 6124346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630990

RESUMO

In this article, dexmedetomidine (Dex) was used to prevent neurological disorders in patients anesthetized with sevoflurane and the effect was analyzed using ultrasound images based on the restoration algorithm of the linear system model. Children injected with Dex were in the experimental group, while children injected with normal saline were in the control group. The mean arterial pressure (MAP), arterial oxygen saturation (SpO2), heart rate (HR), Pediatric anesthesia agitation scale (PAED) score, Face, Legs, Activity, Cry, Consolability (FLACC) score, and adverse drug event (ADE) in the two groups were compared before the injection (T1), at 5 min (T2), 10 min (T3), and 20 min (T4) after the injection, and when the patient came to himself (T5). It was found that in contrast with the control group, the MAP in the experimental group at T2, T3, and T4 periods was lower, while it was higher at T5 period and its HR at T2, T3, T4, and T5 periods was higher (P < 0.05); the PAED and FLACC scores were lower (P < 0.05), and the incidence of ADE (10.53%) was lower than that in the control group (31.58%) (P < 0.05). However, SpO2 at different periods showed no obvious differences between the two groups (P > 0.05). In conclusion, the restoration algorithm-based ultrasound images had high quality, and they demonstrated good application value in evaluating the effect of Dex to prevent neurological disorders in patients anesthetized by sevoflurane.


Assuntos
Anestesia , Dexmedetomidina , Éteres Metílicos , Doenças do Sistema Nervoso , Algoritmos , Criança , Humanos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/prevenção & controle , Saturação de Oxigênio , Sevoflurano , Ultrassom
6.
Nano Lett ; 21(18): 7724-7731, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34477392

RESUMO

The synthesis of metallic transition metal nitrides (TMNs) has traditionally been performed under harsh conditions, which makes it difficult to prepare TMNs with high surface area and porosity due to the grain sintering. Herein, we report a general and rapid (30 s) microwave synthesis method for preparing TMNs with high specific surface area (122.6-141.7 m2 g-1) and porosity (0.29-0.34 cm3 g-1). Novel single-crystal porous WN, Mo2N, and V2N are first prepared by this method, which exhibits strong surface plasmon resonance, photothermal conversion, and surface-enhanced Raman scattering effects. Different from the conventional low-temperature microwave absorbing media such as water and polymers, as new concept absorbing media, hydrated metal oxides and metallic metal oxides are found to have a remarkable high-temperature microwave heating effect and play key roles in the formation of TMNs. The current research results provide a new-concept microwave method for preparing high lattice energy compounds with high specific surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...